THE ASKEY-WILSON OPERATOR AND THE ${ }_{6} \Phi_{5}$ SUMMATION FORMULA

Shaun Cooper
Institute of Information and Mathematical Sciences, Massey University-Albany,
Private Bag 102904, North Shore Mail Centre
Auckland, New Zealand
e-mail : s.cooper@massey.ac.nz

(Received on November, 25, 2002)
ABSTRACT : The summation formula $\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{(-\mathrm{n})_{\mathrm{k}}(\mathrm{a})_{\mathrm{k}}}{\mathrm{k}!(\mathrm{c})_{\mathrm{k}}}=\frac{(\mathrm{c}-\mathrm{a})_{\mathrm{n}}}{(\mathrm{c})_{\mathrm{n}}}$ can be proved by expanding each term in the identity $(1-x)^{-\alpha}(1-x)^{-\beta}=(1-x)^{-\alpha-\beta}$ by the binomial theorem, equating coefficients of x^{n} on both sides and relabelling parameters. The aim of this paper is to use the Askey-Wilson operator D_{q} and its index $\operatorname{lad} D_{q}^{\alpha} D_{q}^{\beta}=D_{q}^{\alpha+\beta}$ to give a similar proof of the summation formula for a terminating, very well poised ${ }_{6} \phi_{5}$ series.

AMS subject Classification: Primary 33D20, 22C20; Secondary 39A70, 47B39.

1. INTRODUCTION

The Wilson and Askey-Wilson divided difference operators arise naturally in the theory of the Wilson and Askey-Wilson polynomials, respectively; see [2, pp. 32-36]. Properties and applications of these operators have since been studied by several authors. Askey [1] used the Askey-Wilson operator to give a simple proof of Rogers' connection coefficient formula for the continuous q-ultraspherical polynomials. The Askey-Wilson operator and another operator were used by Kalnins and Miller [7] to derive the orthogonality of the Askey-Wilson polynomials. Ismail [6] gave new proof

